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We investigate the growth kinetics of both binary fluid and ternary microemulsion systems in two dimen-
sions using a recently introduced hydrodynamic lattice-gas automaton model of microemulsions. We find that
the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with
experiment and consequently affects the nonequilibrium growth of the oil and water domains. As the density
of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to
a growth that isslow, and we find that, up to a point, this slow growth can be characterized by a logarithmic
time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain
point; we find that this final characteristic domain size is inversely proportional to the interfacial surfactant
concentration in the system and that a stretched-exponential functional form accurately describes the data
across the whole time scale of the simulations in these cES#863-651X97)08101-4

PACS numbegps): 82.70-y

I. INTRODUCTION lations have confirmed experimental observations and theo-
retical predictions[13,14] for these systems. That is, for
The introduction of amphiphilic molecules into a systemmodels without hydrodynamic interactioribinary alloys

of oil and water is known to have marked effects on thethe growth exponent is found to he= 2, independent of the

properties and pehavior of such miXtures. .AS a result of theépatial dimension. If flow effects are relevdbtnary fluids,
particular physical and chemical properties of surfactant

X and the domain siz& is greater than the hydrodynamic
molecules one can observe the formation of a wealth of com: 2 . . e

plex structures. For a general review see Gellegral [1]. length Ry=(»*/po) [13], where » is the kinematic vis-
One major feature of these systems is that the usual oiI-wat&rpsc'ty’p is the dens_lty, ar;dr is the surface_ tenS|c_m coeffi-
interfacial tension is dramatically lowered by the presence of'€Nt, then one obtains=3 in two space dimensions. We
amphiphile[2], this being the origin of much of the commer- USe our lattice-gas model to |nve§t|gat'e this as weII. as the
cial interest in such self-assembling structures. Making uséss commonly observeR<R; regime in two-dimensions

of the dynamical nature of our recently introduced hydrody-(2D), which has not been accessed before with lattice gases;
namic |attice-gas model of microemu|sio[’&;|' we demon- this is described in Sec. IV. In three dimensions in the re-

strate that it is able to consistently simulate this importangime R<R;, the growth exponent ig:% crossing over to
experimentally observed phenomenon. _ . N g
Growth kinetics in binary immiscible fluids have received n Tlh atllate t_|mes;c V\gtm i 3 if R>_ Ry 'f il ion b
much attention recently. Phase separation in these systemﬁ_ € lowering o the oil-water interfacial tension y am-
has been simulated using a variety of techniques: these if?NiPhile has important consequences for the nonequilibrium
clude cell dynamical systems without hydrodynaniiland dynamlcallgrovyth of domains W|th|n ternary systems. Our
with Oseen tensor hydrodynamics]; time-dependent Microscopic lattice-gas model of microemulsions, which cor-
Ginzburg-Landau models without hydrodynami@, and rectly models the mesoscopic and macroscopic fluid behav-
with hydrodynamicd7-9]; as well as lattice-gas automata ior, enables us to investigate_ suc_:h dynamica_l domain growth.
[10,11] and the related lattice-Boltzmann techniq(i&g]. A In ternary systems, grovvth_ kmehc; has previously b_een stud-
central quantity in the study of growth kinetics is the time-i€d by numerical integration of time-dependent Ginzburg-
dependent average domain sR&). For binary systems in Landau models, for example, the hybrid models of
the regime of sharp domain walls, this follows algebraick@wakatsuetal. [15] and the two local order parameter
growth laws of the formR(t) ~t". In general, previous simu- model of Laradjiet al.[16,17]. These models do not include
hydrodynamic effects and find that surfactants modify the

dynamics from the binarp= 3 algebraic exponent to a slow

*Electronic address: emerton@thphys.ox.ac.uk growth that may be logarithmic in time. More recently
"Electronic address: coveney@cambridge.scr.slb.com Laradji et al.[18] have modeled phase separation in the pres-
*Electronic address: bruceb@bu.edu ence of surfactants using a very simple molecular dynamics
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model which implicitly includes hydrodynamic forces. Thesethese models and systems with reference to certain specific
authors found that such systems exhibit nonalgebraic, slowreas. Section Il contains a brief review of our lattice-gas
growth dynamics and that the average domain size saturat@sodel. In Sec. Il we use the dynamical nature of our model
at a value inversely proportional to the surfactant concentrain order to make a direct numerical evaluation of the oil-
tion. They also found a crossover scaling form which de-water interfacial tension both with and without surfactant
Scribes the Change from the algebraic growth in pure binarpresent. The determin-ed r:eduction of the interfacial tension
fluids to a slower domain growth when surfactants ardn the former case, which is our result for dynamical lattice-
present. This scaling Ansatz was observed to hold with aff@sed models and can be more closely compared with ex-
exponentn=1/2, which corresponds to the binary growth perimental re.sult.s than other mode_ls, has a direct effect. on
exponent seen at intermediate times in 2D in other recentpe growt_h Kinetics of domains which we subseqyently In-
simulations, as discussed in Sec. IV. Contrasting with thes¥estigate in Secs. IV and V. In the Ia_tter ternary microemul-
results, Pold and Dawsor{19] have recently suggested sion case, we detail the slow _domam.grovvth obgerved and
that with noise included in a time-dependent hydrodynami !nd that a stretched—expongntlal functional form is the best
Ginzburg-Landau model, binary-fluid-like power-law growth it to the data when saturation of the system occurs.
behavior can be observed across the whole range of surfac-

tant densities, with the exponent decreasing as the amount of  Il. THE LATTICE-GAS AUTOMATON MODEL

surfactant is increased. However, this is clearly not how real . . . . .
microemulsion systems behave: Even with noise present i Our lattice-gas model is based on a microscopic particu-
the system, one would expect domain growth to cease onc,%‘te format th"?‘t allows us to .|nclude dipolar s.urfactant. mol-
sufficient surfactant is present, and consequently one woul'acLIIeS alongside the basic oil a_nd water partlf,ﬁﬂ_sln this .
also expect the growth to slow down significantly prior to paper we are only concerned with a two-dimensional version

this. We believe that the technique employed ByzBa and of the modell, though an extension to the th.ree-dimen.sional
Dawson has not allowed them to access the true Iate-tim\éers'on(?’D). IS cgrrently underwa)kgl]. Working on a tri-
dynamics with noise present in the system; although this ma ngular lattice with Ia}ttlce vegtorcs .(' =1....6), thest_a.te
simply be due to them choosing to do fits using effective f the 2D mode_l at sitex andatlmet is completely s_,pecmed
exponents rather than probing other growth laws and due tBY the occupation numbernsi’(x,t) € {0,1} for particles of
the fact that the scaling region within which they calculatedSPeciesx and velocity € /At). _
the exponents is probably too short for intermediate to high 1€ evolution of the lattice gas for one time step takes
surfactant concentrations. Access to this asymptotic regim@lace in two substeps. In theropagationsubstep the par-
is also difficult for molecular dynamics simulations. Lattice- i€l€S simply move along their corresponding lattice vectors.
gas automaton models, on the other hand, while including b the collision substep the newly arrived particles change
construction the correct hydrodynamics, permit simulationdh®ir state in a manner that conserves the mass of each spe-
over a wider range of relevant time scales than those tectf€S as well as the tot&)-dimensional momentum. _
niques described above. Fluctuations are an inherent and im- We allow for two immiscible species which, following
portant physical component of such models, and consekonvention, we often represent by colore=B (blue) for
quently our microemulsion model provides useful andWater, andx=R (red for oil, and we define theolor charge
arguably unique insight into the dynamics of such compIeXOf a particle moving in directiom at positionx at timet as
systems. ai(x,t)=nf(x,t)—nf(x,t). Interaction energies between
Characterization of the slow growth found in these am-outgoing particles and the total color charge at neighboring
phiphilic systems prior to saturation of the domain size re-=sites can then be calculated by assuming that a color charge
mains a challenge. Comparative slowing down in domairinduces ecolor potential(r) =qf(r), at a distance away
growth has been observed in 2D simulations of systems witfrom it, wheref(r) is some function defining the type and
quenched impuritieE20], where the growth is described by a strength of the potential.
logarithmically slow activated process wil(t) ~ (Int)’. For To extend this model to amphiphilic systems, we also
these systems the surface tension diminishes over timétroduce a third(surfactank speciesS, and the associated
whereas for amphiphilic systems, which may not beoccupation numbemis(x,t), to represent the presence or ab-
guenched in the same sense as the impurities in these moskence of a surfactant particle. Pursuing the electrostatic anal-
els, the surface tension begins to be affected as soon as thgy, the surfactant particles, which generally consist of a
molecules reach oil-water interfaces. Here we are interesteaydrophilic portion attached to a hydropholffgydrocarbon
in the growth laws that are observed as we approach thportion, are modeled asplor dipole vectors o;(x,t). As a
“saturation” point in our system. This is the point at which result, the three-component model includes three additional
self-similarity and the usual scaling laws must break downinteraction terms, namely, the color-dipolar field, the dipole-
In some sense there must be an exponential tailoff in theolor field, and the dipole-dipole interactions.
growth of domain size as the saturation point is reached. The The total interaction energy that results can be written
results obtained using our microemulsion model for domain
growth in these ternary systems as the quantity of surfactant AHi=AH o+ AH 4+ AH 4+ AH g4
is varied are presented in Sec. V.
The purpose of this paper is to establish that our lattice- —
gas automaton amphiphilic model exhibits the correct physi-
cal and kinetic behavior in both the binary and ternary
phases, as well as extending what is currently known abowhere we have defined tremlor flux of an outgoing state

(J+%) (E+P)+ Z(E+P) AL, ()
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"G which we note to be exactly identical to the expression for
Jx,t)=>, A—'qi’(x,t) (2)  the total color work used by Rothman and Kell@4] to
T At model immiscible fluids. Correspondingly, with no oil in the
I§ystem we are free to investigate the formation and dynamics
of the structures that are known to form in binary water-
surfactant solutions. Indeed, in our original paf@rwe in-
vestigated both of these limits. In the limit of no surfactant
E(x.t)= 2 fa(y)ya(x+y,t), (3 we obtained immiscible fluid behavior similar to that ob-
yet served by Rothman and Keller, and for the case of no oil in
the system we found evidence for the existence of micelles
and for a critical micelle concentration. Moreover, we dem-
gnstrated that this model exhibits the correct 2D equilibrium
microemulsion phenomenology for both binary and ternary
phase systems using a combination of visual and analytic
techniques; various experimentally observed self-assembling
P(x,t)=— Eﬁ [f2(y)yy—Fi(y)1]- o(x+y,t), (4  structures, such as the droplet and bicontinuous microemul-
ye sion phases, form in a consistent manner as a result of ad-
where 1 denotes the rank-two unit tensor anat' =3, ¢;  Justing the relative amounts of oil, water and amphiphile in
represents the total outgoing dipolar vector at a site. Simithe System. The presence of enough surfactant in the system
larly we have defined thdipolar flux tensor is shown to halt the expected phase separation of oil and
water, and this is achieved without altering the coupling con-
"o stants from values that produce immiscible behavior in the
Jx,H=2, At o/ (x,1), (5)  case of no surfactant.
' Note that in order to incorporate the most general form of
interaction energy within our model system, we introduce a
set of coupling constants, u,€,, in terms of which the
total interaction energy can be written as

(the sum extending over all lattice vectors at a site, so that i
this casen=6), and thecolor field

where the sum is over siteg which are elements of the
hexagonal latticeC. For short-range forces, the functiép
has compact support so that this sum includes only site
nearbyx. Thedipolar field vector is

and thecolor-field gradient tensor

Ex0= 2 q(x+y,Of2(y)yy—fa(y)1]l, ()
yeL AH;p= aAH oo+ uAH g+ €AH g+ (AH 3q. (10)

where againl denotes the rank-two unit tensor. Finally we these terms correspond, respectively, to the relative immis-
have thedipolar field gradienttensor cibility of oil and water, the tendency of surrounding dipoles

to bend around oil or water particles and clusters, the pro-
Px,t)=— > a(x+y,t)-[f3(y)yyy—fo(y)y- @], (7)  pensity of surfactant molecules to align across oil-water in-

yeL terfaces, and a contribution from pairwigdignment inter-

actions between surfactants. In the present paper we analyze
domain growth of critical quenches within both binary and
ternary systems and consequently the two coefficients with
which we are most concerned ageand e.

wherein Q is the completely symmetric and isotropic
fourth-rank tensor. In Egqs(3), (4), (6), and (7) we have
defined certain derivatives of the functidfr)

/
f/(y)E( ~y @) f(y), (8) ll. SURFACE TENSION ANALYSIS

The lowering of the interfacial tension between oil and
water by the action of surfactant molecules located at such
interfaces is an important property of microemulsions. Ex-

erimental investigation of polymer—block-copolymer sys-
ms, where the time scales are much slower than in the

where/ is a positive integer or zer8].

The collision process of the algorithm consists of enumer
ating the outgoing states allowed by the conservation law
calculating the total interaction energy for each of these, an

then, following the ideas of Chan and Liafg2] (see also  (q|ated microemulsions, has made studies of such character-
Chenet al. [23]), forming Boltzmann weights istics possiblg[25]. In the present section, we analyze the
e~ BAH 9) surface tension within a system of oil, water, and surfactant
' as it varies with the surfactant densifgyoncentration We

where g is an inverse temperaturelike parameter. The postWork with 8=1.0 and use, consistently throughout this pa-
collisional outgoing state and dipolar orientations can therPel, @=1.0, ©=0.001, €¢=8.0, {=0.005 as the values of
be obtained by sampling from the probability distribution the coefficients in Eq(10), strongly encouraging surfactant
formed from these Boltzmann We|ghtS, Consequently the upmolecules to accumulate at oil-water interfaces while main-
date is a stochastic process. The dipolar orientation streantgining the normal oil-water immiscible behavior.

with surfactant particles in the usual way. We begin by showing that our model, in the limiting case

wise limits. With no surfactant in the system, Efj reduces facial tensions. In terms of the basic two-species Rothman-
to the color-color interaction term only, Keller immiscible lattice-gas, surface tension has been exten-

sively investigated from both a theoretical and a numerical
AH .=J-E, viewpoint by Adler, d’Humiees, and Rothmaf26]. Using a
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Py of pressure normal to the interface and the component
P+ transverse to the interfa¢26,28:

0050 T T T T T T

0.040F

o= | tPu@-Pr2)10z 13

3 This quantity can be calculated by empirically computing the
] given integral while remembering to take the underlying lat-
] tice into account. It is worth noting that no equilibrium mi-
3 croemulsion model can measure the surface tension this di-
] rectly since the method is inherently dynamical; equilibrium
3 models rely on calculating as a function of variougmter-
3 action parametersindeed, the few other simulation models
] that do include dynamical effects for such complex fluids,
s often depend on the evolution of order parametéos in-
00008 e e stance, time-dependent Ginzburg-Landau mgdalsd as
0.00 0.05 0.10 0.15 .. . . .
1/R such have a coefficient that is simply tuned in order to alter
the surface tension. There is an important caveat to be men-
FIG. 1. Verification of Laplace’s law and estimation of surface fioned here: as the initial concentration of surfactant in the
tension for two immiscible fluid¢oil and watey only. system is increased one finds that the initially stable oil-
water interface begins to show signs of distortion and

bubble experiment as described in their paper, we can chedd€akup. This effect arises as a result of the energetics of the
the validity of our basic model by evaluating the surfaceSystem; prefereqtlally surfactant particles reside in thin
tension in the immiscible fluid case. We use Laplace’s law(Mmonolayers at oil-water surfaces and consequently the sys-
which in two dimensions is tem acts to create as much oil-water interfacial length as
possible in order to accommodate the amphiphile. At some
critical density of surfactant it is clear that the initially flat
- (12) interface will break up completely; indeed, we then see the
R formation of a bicontinuous “middle” phase corresponding
to an effective oil-water surface tension of zero. At and be-
whereao is the oil-water interfacial tensiof is the radius of yond this point the methods outlined above for measuring
the bubblepP;, is the average pressure within the bubble, ando are ineffective. However, below this critical density we
P.u: the average pressure outside. Simulations are carried oakpect to be able to use E@lL3) to evaluate the surface
using bubbles with a number of different radii. The pressurdension, bearing in mind that, as we add more surfactant to

0.030F

Pressure Difference

0.020F

0.010F

o

Pin—=Pou=

in lattice gases is given in tensorial form p37] the system, we have to wait correspondingly longer for the
interface to relax before relevant measurements<of >
6 can be made; we expect sections of negative valuesrfor
P“B:Eo CiaCigNi, (120  prior to equilibration and denote these as being part of a
=

“transient region.” In the asymptotic region the interface
stabilizes and only positive average values for the surface
wherea and B are tensor indices, and the expression can beension are found; this is denoted as the “smooth region.”
evaluated by calculating the distribution of the populations The results shown in Fig. 2 are the values of interfacial
N; . The pressure arises as a result of the collision step of thiension obtainedypnce the smooth region has been reached
lattice dynamics and so to a good approximation is depenfor varying initial concentrations of surfactant in the system;
dent on local interactions only. The results from our simula-the error bars from the subsequent time average are smaller
tions are shown in Fig. 1. They give good agreement withthan the size of the symbols and so are not included. The
Laplace’s law, and a best-fitting line through the origin re-plotted values of surfactant density are given as a proportion
sults in an estimate af~0.378, close to the results reported of the total reduced density of oil, water, and surfactant in
by Adler and co-worker§26]. the system3]. The figure clearly shows that our model is
We now turn to the analysis of the interfacial tension forbehaving as one would expect; the interfacial tension is re-
varying initial concentrations of surfactant in the system,duced dramatically just by simply increasing the presence of
where in each case the amphiphile is added at an initiallamphiphile in the system, this being in exact accord with
flat, bulk oil-water, interface. We make use of a direct dy-experimen{25]. It is worth mentioning that our results also
namical method of calculating the surface tension across thislosely mimic the interfacial behavior in a mixture of two
flat interface, although, due to the complex dynamical naturémmiscible polymers to which is added a linear diblock co-
of the microemulsion behavior we are modeling, as morgolymer comprised of units of both of the immiscible poly-
surfactant is added we have to allow for progressively morenmers: a sharp decrease in interfacial tension is observed with
extensive relaxation of the system before collecting data othe addition of a small amount of copolymer, which com-
the equilibrated system. For the case of a flat interface peipares well with the linear section of the graph, followed by a
pendicular to the axis, the surface tensianis given by the leveling off as the copolymer concentration is increased. The
integral overz of the difference between the componentleveling off at higher concentrations is indicative of interfa-
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alter the surface tensid@and related viscosijywithout hav-
osop T T T T T T T T T T T T ing to change the density and consequently we can easily
s 3 access th&®<R,, regime. In loweringB the collision step of
the time update results in a slower phase separation mecha-
nism acting at the interface between the two binary fluids,
consequently the surface tension is reduced; however, the
bulk viscosity is independent g8 [22] and so this mecha-

nism raisesR;,. In this case we expect to find a growth

exponent ofn=73 since our model has full hydrodynamics

E with inherent fluctuations, resulting from a droplet-

3 coalescence mechanigi®9,10, in accordance with the pre-

1 dictions of Furakaw#30] and the molecular dynamics simu-

3 lation results of Velasco and Toxvaefdl]. We note that

3 this high R, regime can also be accessed by lattice-
Boltzmann models and that one such model was used re-

ooob o . o TS - cently for an investigation into binary fluid spinoidal decom-
0.00 0.05 0.10 0.15 0.20 1

Surfactant Density position [32]. This group findn=3 and currently there is
some controversy as to which is therrectexponent in this
FIG. 2. Surface tension as calculated for varying amounts of€dime. However, it should be noted that these lattice-
amphiphile(reduced densityin the system. Boltzmann simulations do not include fluctuations and that
this appears to be the important difference between the mod-

cial saturation by the copolymer and subsequent formation cﬁls;. if such features are regarded as desirable, the noise has to
copolymer micelles dispersed in the homopolymer phased® inserted by hand. o _
The relatively flat region of the curve at very low surfactant To_analyze the domam growth quantltanvely we Obta'.n
densities is due to the tendency of a certain number of amile first zero crossing of the coordinate-space pair-
phiphiles to exist as highly dynamic monomers within thecor-rela.tlon funct|on,_ which is equal to the charac’Ferlsnc do-
bulk oil and water regions. As more surfactant is subseMain size,R(t). At time t following the quench, this corre-
quently added to the system, these molecules preferentialftion function is given by

align at the energetically favorable oil-water interfaces and 1

so begin to strongly influence the interfacial tension. We find C(r,)=={ > qxt)g(x+r,t) (14

that, as the surfactant density is increased, the transient re- V%

gime persists for a longer time: 1000 time steps for a surfac- ) . .

tant density of 0.0156, 3000 time steps for 0.0469, andvhereq(xt) is the two-fluid(oil and watey density differ-

13 000 time steps for 0.1172. This implies that we are movEnce(total color charggat each siteV is the volume, and

ing towards ecritical value of the surfactant density at which the average is taken over an ensemble of initial conditions.
the flat interface will break up altogether and a smooth re-Taking the angular average 6f(r,t) givesC(r,t), the first
gime will never arise. This is first seen in our simulationsZ€ro crossing of which gives a measure of the characteristic
with a surfactant density of0.195: beyond this value, the domain size. Typlcally, at least five independent runs were
computed average surface tension remains negative over tg¥eraged to determine the growth law for each system stud-
entire simulation and permanent breakup of the initially flat'®d: . ) i ,
interface is observed. In Fig. 2 we have designated this point Settinga=1.01in Eq.(10) and the inverse temperaturelike

as corresponding to an effective surface tension of zero. Paramete3=0.5, we perform a critical quendthat is, with
equal amounts of oil and water in the sysjeom a simula-

tion cell of size 25&256. The initial condition is random
IV. PHASE SEPARATION placement of the oil and water particles on the underlying
IN'BINARY IMMISCIBLE FLUIDS lattice. The result is shown in Fig. 3, where we have used

In the 2D binary oil-water limit of our model we expect !ogarithmic scales so as to be able to observe any exponent
in the algebraic power-law growth for the system. The do-

0.40F

0.30F

Surface Tension

0.20F

the domain growth exponent to be=%, in line with the i ) ) , ,
results of previous lattice-gas and related models. This i€1ain growth exponent is clearly=35, consistent with pre-
consistent with being in the inertial hydrodynamic regime,Yious results obtained for the Rothman-Keller mog&0]
where the hydrodynamic lengtR,, is less than the domain gnd characteristic of the regmﬁé>_ Ry . _It is wort_h mentlon-.
sizeR, a condition forced on prior lattice-gas modgl®] as N9 that, as expected, we obtain this behavior for a wide
a result of their inability to vary viscosity or surface tension '@nge of values op, from 0.3 upwards. .
independently of density. A benefit of our model is that we  Further lowering ofg and hencer, the interfacial ten-
can access the other scaling regime, which has not prevpion allows us to access the<Rj, regime, where typically
ously been accomplished with lattice gases, wiiereR,, , in the domain size is expected to be Igss than the_hydrodynam|c
a consistent manner. This is possible because of the presen€89th. We do indeed observe a different scaling exponent.
of the inversetemperaturelikeparameterg that we have in- 1€ result for3=0.137 is contained in Fig. 4, where the
troduced into our lattice-gas modelee Eq(9)]. This gives  exponent is clearlyy= 3. Although not included in this fig-

us exactly the desired form of control, since we are able tarre, at later times than those shown or, alternatively, with
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100 T T T

surface tension

R(H)
)
T

10 100 1000
time

1 1 2l ' PR | ‘ L 1y
10 100 1000 10000 FIG. 5. Decay of surface tension with time for a binary fluid
’ following an instantaneous change in the system to alleftehand
curve and equal to the critical “temperature.” The solid lines have
FIG. 3. Temporal(time step$ growth of domain sizglattice gradients equal to-1/2 (left-hand curve and —1/4 and are in-
units), R(t), for binary fluid andB=0.5, shown in a logarithmic- cluded as a guide to the eye only.
scale plot. The straight line has gradient 2/3 and is included as a
guide only. first look at results for interface dissoluti¢83]. It is known
that the time dependence of the decay of the interfacial ten-
larger values ofB, we have observed the beginnings of sion at a binary equilibrium interface depends on whether the
crossover ta?® behavior, consistent with expectations. Thefinal “temperature” is above or equal to the critical tempera-
crossover fromt? to t?® growth behavior occurs at a pro- ture; we can use this knowledge to clarify the dynamics
gressively earlier time ag is systematically increased from within our system. We findsee Fig. %

0.137. OnceB gets close to 0.3 then the= 3 behavior is no (1) o {12 <g.- 15
longer seen, the crossover effect disappears and we get 7 B=PBe: « » BB (15
n=% growth right from the start of the simulations. these results are in exact agreement with the predictions of

In order to check that the presence of tive 3 exponent Ma et al.[33] for a model Bbinary fluid. The second check
in our results is not an artifact of incorrect dynamics in ourwe can make is to look for the well knowmodel B
model, we undertake two separate checks to confirm that thieiftschitz-Slyozovt*® domain growth exponent in the ab-
dynamics is indeed of typmodel Bas defined by Mat al. ~ sence of hydrodynamics. This can be accomplished by run-
[33]; that is, there is one conserved scaldile density and ~ hing binary fluid domain growth simulations with our model
one conserved vectdthe momentumorder parameter. We as above, but in this case we break momentum conservation

100_ T T T Ty T T T T T T I‘IYYYII T T lIIIII— 100» T T Ty T LERELRRRLI | T T T T

R(t)
°
|

|
R()
I
T

1 L el M | N | Lt 1t 1 | P | TN
101 102 103 104 10 109 10 102 10
t t

FIG. 4. Temporal(time stepy growth of domain sizglattice FIG. 6. Temporal growth of domain sizB(t), for binary fluid
units), R(t), for binary fluid and3=0.137, shown in a logarithmic- with broken momentum conversation, shown in a logarithmic-scale
scale plot. The straight line has gradient 1/2 and is included as plot. The straight line has gradient 1/3 and is included as a guide to
guide only. the eye only.
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FIG. 7. Bicontinuous microemulsion structure shown at time step 200 of a simulation with equal amounts of oil and water in the system.
The arrows depict the direction of the amphiphile vectors: note that they always point from the oil to water domains, as we expect.

at a predetermined percentage of sites on the lattice by resuch interfaces, however, means that at some point the
versing all particle velocities immediately after the collision shrinking must cease so the system establishes its saturated
process has taken place. The result is the expedtédo-  domain size. The underlying lattice-gas dynamics will of
main growth, see Fig. 6. These results provide confirmatiorourse still be present in such a system, but, by averaging
that themodel B dynamics, which we are assuming to be over an ensemble of simulations and over time we expect to
inherent to our model, are correct. be able to determing,.

We begin with equal amounts of oil and water in our
system while the amount of surfactant is varied for each
simulation. We note that this leads to the growth of bicon-

We now turn to the analysis of the ternary system. It istinuous as opposed to droplet phases and that these are ef-
clear that the presence of surfactant in an oil-water mixturdectively equivalent to the critical quenches investigated in
dramatically alters the interfacial energetias particular, it  the binary-fluid case. Again we work witg=1.0 and use
lowers the interfacial tensigrand so it will affect the growth —exactly the same values for the coupling coefficients in Eqg.
of domains and consequently alter the usual binary-fluid10) as detailed earliefin Sec. Il)—consequently, all the
scaling phenomena. When there is sufficient amphiphilgesults which follow come solely from varying the amount of
present we expect to see some final characteristic domaurfactant in the system. In essence this consistent choice of
size R, imposed on the system as it reaches an equilibriuntoefficients requires the surfactant particles to sit at the bulk
state. The effect that the amphiphile molecules have on theil-water interfaces and discourages the formation of mi-
usual oil-water immiscible behavior is clearly shown in Fig. celles which would hamper the accurate measure of the char-
7, which depicts time step 200 of a simulation of a bicon-acteristic length scale of the bicontinuous domain. The re-
tinuous microemulsion phase; the arrows show the directiosults that follow for the ternary system have been obtained
and size of the color dipole vectors which represent the suren a 128128 lattice with periodic boundary conditions in
factant particles. We note that as expected the surfactant pavoth (x andy) directions, and with the particles initially
ticles migrate to the oil-water interfaces and always tend tglaced on the lattice at random. The amount of surfactant
point from one color to the other, sugesting that they areused in each simulation is given in terms of its reduced den-
exhibiting a hydrophilic-hydrophobiclike nature. Due to the sity; the amount of oil and water in the system is kept con-
immiscibility of the oil and water particles, all oil-water in- stant, being at a reduced density of 0.17 for each simulation.
terfaces seek to contract in length as much as possible; thehe measurement of the domain sRé) is calculated from
very strong requirement that the surfactant particles sit athe spatial pair-correlation function, as described in Sec. IV.

V. SELF-ASSEMBLY KINETICS IN MICROEMULSIONS
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FIG. 8. Temporal(time stepy growth of domain sizglattice ) o .
units), shown in a logarithmic-scale plot. The straight line has gra- _FlG' 9. Te_mporal(tir_ne s_tep$ growth of domain S|ge(lattice
nits), shown in a logarithmic-scale plot. The straight line has gra-

dient 2/3 and is included as a guide to the eye. The upper symbofé,. 1/2 and is included id h H h
(crossep are for 0.02 surfactant and the lower diamonds are for lent and is included as a guide to the eye. Here we have

0.04 surfactant. 0.06 surfactant.

size effects in the system, as we have stopped the simulations
The results for systems with reduced surfactant densitiesell before this becomes a problem. The observed “jump”
of 0.02 and 0.04 are shown in Fig. 8. For the former anof the growth exponent froom=2 to n=%, and then to

average over five simulations is shown, while the latter congjower behavior as the surfactant density is increased, is con-
sists of an average over ten. Over the late-time scaling resistent with the binary-fluid behavior results that we outlined

gime, domain growth in both of these systems clearly projy sec. |v. The drop in surface tension takes us into a regime
ceeds with an algebraic exponent of=5. There is that is equivalent to the slow binary one and beyond this to
insufficient amphiphile in the system to affect the oil-water slower-than-algebraic growth. These results also show clear
binary immiscible fluid behavior. As described in Sec. lll, evidence of the crossover scaling transition, alluded to by

this is consistent with the expec_t_ed presence of_a_certainaradjiet al.[18], from algebraic binary growthn(=%) to a
number of background amphiphilic monomers within theg|ower domain growth when surfactants are present. Our use
bulk oil and water regions, an effect which for real systems isyf 4 |attice-gas model, in contrast to the molecular dynamics
dependent on the strength and type of amphiphile employeqechnique employed by these authors, has the advantage of
If there is any change in domain growth due to the tinygasy access to a wide range of different time-scale regimes,
amount of surfactant present in these two simulations, ilg the results we obtain here make evident.

would onI_y be observed at very late times on significantly Increasing the initial reduced density of amphiphile to
larger lattices than those we have used here. We can inveg:og we see a clear departure from algebraic behavior over
tigate such effects, however, by simply starting with morée time-scale of the simulations: After the first 400 time

surfactant in the system. From our analysis in Sec. Ill, Westens the slope of the curve is consistently below the line
expect a significant reduction in the surface tension to occur ', . . .
at the equivalent of a reduced density .0.05 surfactant n:f al':chc;]ugh. thel dpmains cr?ntlnu-e th grcln(/)v oc\:/er the t'mT
and beyond. At this point, large numbers of surfactant mol_scale Ok the snlnu a}fi?n, as s 0(;"’” In 9. Y. odnsequgnty
ecules have attached themselves to the oil-water interfacdé€ /00K at a plot of ln against domain size in order to in-

and so begin to affect the dynamical growth of domains vestigate whe_ther_we now have Iogarithn_”nc_ally slow, or just
Although not shown here, with a reduced density of O_05slow, growth in this region. As before, this is shown plotted

surfactant in the system we obtain a crossover from an ex! logarithmic scale$_see Fig. 1], so that we are able to
f observe any algebraic exponent for thé ¢mowth. If the

ponentn=3 to n=3 at late times as surfactant molecules g, growth in these systems can indeed be related in some
adsorb at the interfaces and, as expected, begin to affect ”Way to that in systems with quenched impurit[@g)], then
domain growth. . we would expect to find some powérfor the growth func-
With reduced surfactant densities of 0.Gd 0.07), We g (Int)?, which decreases as the amount of surfactant in the
observe a growth exponent of= ; for a majority of the time  system is further increased. In this initial case we find a value
evolution, but in addition there is now a clear crossover tog=3.0 for the time scale of the simulation beyond the very
slower-than-algebraic growth at late times. This is depictedarly-time transient behavior.
in Fig. 9, which contains the result for domain growth in a  Moving to simulations with higher quantities of am-
system with 0.06 surfactant and is obtained from an averagghiphile, it is clear that there is enough surfactant present in
over nine simulations, each having different initial randomthe system for the domain growth to be significantly re-
number seeds. The behavior described is not due to finitdarded. Figure 12 contains logarithmic-scale plotsRgf)
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FIG. 12. Temporaltime steps growth of domain sizélattice
units), shown in a logarithmic-scale plot. The upper points corre-
pond to 0.10 surfactant and the lower ones to 0.12 surfactant.

FIG. 10. Temporaltime stepg growth of domain sizélattice
units), shown in a logarithmic-scale plot. The straight line has gra-
dient 1/2 and is included as a guide to the eye. Here we havé

0.08 surfactant. o i
R(t) versust that a significant slowing down occurs after

versust for 0.10 and 0.12 reduced density of surfactant, andapproximately the first 400 time steps of the simulations
shows that we are now in a regime where we get completédesignated as the transient regiofhis is obviously related
cessation of domain growth well within the finite-size limits to the time required for a significant proportion of the sur-
of the system. The former of these is the result of an averag&ctant molecules present to migrate to the oil-water inter-
over 14 runs, and the latter an average over ten. In a simildaces that form rapidly at very early times. Consequently we
fashion to the above we reanalyze these two results, agalaok at later times, although again presaturation, to establish
using the logarithmic-scale plots &(t) versus Inin order  a value for the exponerd. Figure 14, again a logarithmic-

to establish whether a value for the exponéntan be ex- scale plot ofR(t) versus I, but in this case for a surfactant
tracted to help clarify the nature of the “slow” growth ob- density of 0.12, gives an approximate exponentgefl.1
served prior to saturation. Figure 13 contains a logarithmicover the majority of the simulation running time, followed
scale plot of R(t) versus In for the first of these (0.10 by saturation of the domain size at late times. With these
surfactant and shows slow logarithmic growth with expo- intermediate surfactant densities, as clearly shown in Fig. 12,
nent #=2.2 prior to saturation. With surfactant densities of we observe large fluctuations in the measured domain size at
0.12 and higher it is clear from the logarithmic-scale plots oflate times in the simulations which cannot be eliminated by

100 T T T ] 1001 . . T T

0
o
T
|
R(t)
=)
T

FIG. 11. Plot of It (time step$ against growth of domain size FIG. 13. Plot of domain sizélattice unitg against I (time
(lattice unitg, shown with logarithmic scales and surfactant densitystep3, shown with logarithmic scales and surfactant density of
of 0.08. The straight line has gradient 3.0 and is included as a guid@.10. The straight line has gradient 2.2 and is included as a guide
only. only.
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steps for surfactant density of 0.12. The full line superimposed on
the figure is the stretched-exponential fit to the data points.
FIG. 14. Plot of domain sizélattice unitg against I (time

steps, shown with logarithmic scales and surfactant density of o o .
0.12. The straight line has gradient 1.1, and is included as a guid@ final characteristic saturated domain size for the equilib-

only. rium structures formed by the system. We expect that the
average domain size will stop growing when all of the oil-
water interface is covered by a surfactant “monolaygt8].
ensemble averaging. Indeed, these fluctuations have an irhloting that the average domain siZ(t), is inversely pro-
portant physical basis in that they correspond to the continuglortional to the total length of such oil-water interfaces, we
break up and reformation of the bicontinuouslike structureghen expect the final domain size to be inversely proportional
under investigation, resulting from the finely balanced com10 the average density of surfactants at these interfaces. How-
petition between the immiscible binary-fluid behavior of oil ever, in contrast to the deep quenches with no system fluc-
and water and the action of surfactant molecules at oil-watefuations performed by Laradgt al. [18], where all the sur-
interfaces. As we increase the density of surfactant beyontfctant molecules are found at oil-water interfaces, we have a
this level, we find that the fluctuations become less severgituation wherein a certain amount of the surfactant is likely
and actually die out because sufficient surfactant moleculet® exist as monomer in bulk oil and water regions, this being
reside at the interfaces to effectively outweigh the oil-waterconfirmed by our surface tension analy@se Sec. I)l. Con-
interfacial tension completely. The domain structures thersequently, in plotting the final domain si& as a function
become strongly pinned and consequently less fluctuation i&f 1/ps, whereps is the average density of surfactant at the
allowed by the system. oil-water interfaces, we need to evalugtg from the total
With sufficient surfactant present in the system for theamount of surfactant in a particular system by subtracting
domain size to reach saturation, it is clear that the logarithaway the *“background monomer density.” The result is
mic scaling is incapable of completely describing the dynamyplotted in Fig. 17: We find the expected linear relationship
ics. Consequently, following a suggestion by Doudla4],  between the final saturated domain size and the amount of
we attempt to analyze the data in these cases in terms ofiaterfacial surfactant in the system; that is, the final charac-

stretched-exponentidlinctional form, teristic domain size is inversely proportional to timerfa-
cial surfactant density in the system. The straight line on the
R(t)=A—B exp— CtP). (16 plot is a linear fit to the first four pointgThe final point,

corresponding to a total reduced surfactant density of 0.09,

This fit has previously been successfully applied to both aries below this line probably because the simulation had not
experimental micellar systef35] and a simulated supermo- fully equilibrated) It is worth noting that the result shown in
lecular spinoidal systeri36] but never before has it been Fig. 17 is also consistent with the relationship found between
linked with microemulsions. Figure 15 contains the domainthe final domain size and the amplitude of disorder in sys-
size against time data points and the results of the nonlinedems with quenched impurities, as determined by Gyetre
fit to those points using the above functional form, for theal. [20].
case of 0.12 reduced surfactant density. The fit remains good Although not shown here, plotting domain size versus
across the full time scale of the simulation and seems tdnt for the case of surfactant density 0.14 indicates that in
correctly describe the saturation of the system; consequentijis case the slow domain growth may go ast){Irwith
we apply this functional form as the surfactant density is#=0.5 over the dominant time scale of the simulatidbe-
further increased. yond the initial transient regiorand before the domain size

Figure 16, which contains logarithmic-scale plots of saturates completely. The same is true for a reduced surfac-
R(t) versust for simulations with relatively high amounts of tant density of 0.15, but in this cage=0.3 before saturation
amphiphile, shows that the domain growth is finally haltedoccurs. Table | contains a summary of how the exporgent
by the presence of sufficient surfactant: In essence we obtaithanges with surfactant concentration in the region of loga-
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TABLE I. Logarithmic exponen® as it changes with surfactant

T T T concentration.
Surfactant Concentration 0
0.08 3.0
0.10 2.2
0.12 1.1
= 0.14 0.5
& 0.15 0.3

the minimum resolvable domain size; tdecay rate C on
the other hand, and thetretching exponent @re very inter-
esting and well-behaved functions of the surfactant density.
U EE T E In particular,C appears to diverge as the spontaneous emul-
102 10 10 sification point is approached.

FIG. 16. Temporaltime steps growth of domain siz€lattice
units), shown in a logarithmic-scale plot. Moving from top to bot-
tom the points correspond to 0.14 and 0.15 surfactant, respectively. \We have studied both binary immiscible and ternary mi-
The upper curve is an average over ten simulations, the lower five.roemulsion dynamical behavior using our hydrodynamic

lattice-gas model of self-assembling amphiphilic systems. In

T o . _the binary case we have found algebraic scaling laws in
rithmically slow growth studied in these and the prewousa reement with expectatiofit3], the 2D growth exponents
simulations. These results, where the domain growshos; 9! 1 2 P o 9 P
appear to be consistent with a picture obtained from af€ind z and 5 at early and late times, respectively. The
analysis of domain growth with quenched impurities, Whereformer is new to lattice-gas modelsT although it h_as_ alsp been
the slow growth goes as @), and whered changes as the ©Pserved in moleculaf31], Langevin[37] and dissipative
number of impurities is increasé@o]. particle dynamic$38] S|mulf31t|ons, and is also in accord with
In addition to the logarithmic form, we have tried to fit the results of a renormalization-group approatB]. The
our data sets to the stretched exponential functional fornpresence of thg in the former regime, as opposed to the
described above. The results are contained in Figs. 18 arf@und by lattice-Boltzmann and some other simulation tech-
19. We find that the stretched-exponential form, Bd), is ~ hiques, appears to be as a direct result of the inclusion of
a more accurate fit to our data than the |Ogarithmic form,natural fluctuations within the Iattice-gas framework. In the
since it correctly describes the full arrest of domain growth ternary system we have confirmed, in accord with experi-
Of the four coefficients in this functior is a measure of the Mentand in a consistent manner, that the presence of surfac-
and consequently that the growth of domains in such systems
is radically different from growth in the binary case. We find

a crossover from the fast=2 binary regime in which we

VI. DISCUSSION AND CONCLUSIONS
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FIG. 17. Plot of the average final characteristic domain size FIG. 18. Plot of domain sizélattice unitg against time(time
R. (lattice unitg against the inverse of th&éeduced density of  steps for surfactant density of 0.14. The full line superimposed on
surfactant 145 at the interfaces in the system. the figure is the stretched-exponential fit to the data points.
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cance of the divergence of the coefficients of the stretched-

Surfactant Concentration = 0.15 . . . . .
. exponential function, and, in particular, whether this has any

7.2 Y A V' . "' relevance for the use of the two functional forms. In addi-
- '.'f'. = - = T tion, detailed experimental studies of micromeulsionlike sys-
5 7 Ta e tem kinetics would be useful for comparisarter alia with
3 the stretched-exponential results we have obtained here.
% 6.8 In conclusion, we have completed an investigation into
s the complex dynamical behavior of the two-dimensional bi-
S 66 continuous microemulsion phase, which corresponds to a
g critical quench in a binary oil and water system. This work
6.4 represents an important extension to the validation of our
recently introduced lattice-gas model for amphiphilic sys-

tems[3] as well as offering insight into the kinetics of such
systems. However, our model is also able to accurately simu-
Time late off-critical droplet and micellar phas¢8] and further
work is required to unravel the domain growth dynamics in

FIG. 19. Plot of domain sizélattice unity against time(time  sych situations; we expect the dynamical growth laws to be
steps for surfactant density of 0.15. The full line superimposed onmadified in some way since this is also the case for the
the figure is the stretched-exponential fit to the data points. related binary-fluid off-critical quench. Although all the
simulations reported in this paper have been done in two
spatial dimensions, we are currently implementing a three-
dimensional version of our modéR1] where again, since
i&inary growth laws are different in three dimensions, we
)pxpect our present results to be modified.

0 2000 4000 6000 8000 10000 12000 14000

begin, first ton=3 algebraic growth and then to “slow”
behavior as surfactant is added to the system. This behav
mimics exactly the crossover scaling function predicted b
Laradji et al. [18] from molecular dynamic simulations of
similar systems. The greater the_ concentration of surf_acta_nt ACKNOWLEDGMENTS
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