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Lattice-gas simulations of domain growth, saturation, and self-assembly in immiscible fluids
and microemulsions
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We investigate the growth kinetics of both binary fluid and ternary microemulsion systems in two dimen-
sions using a recently introduced hydrodynamic lattice-gas automaton model of microemulsions. We find that
the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with
experiment and consequently affects the nonequilibrium growth of the oil and water domains. As the density
of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to
a growth that isslow, and we find that, up to a point, this slow growth can be characterized by a logarithmic
time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain
point; we find that this final characteristic domain size is inversely proportional to the interfacial surfactant
concentration in the system and that a stretched-exponential functional form accurately describes the data
across the whole time scale of the simulations in these cases.@S1063-651X~97!08101-4#

PACS number~s!: 82.70.2y
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I. INTRODUCTION

The introduction of amphiphilic molecules into a syste
of oil and water is known to have marked effects on t
properties and behavior of such mixtures. As a result of
particular physical and chemical properties of surfact
molecules one can observe the formation of a wealth of c
plex structures. For a general review see Gelbartet al @1#.
One major feature of these systems is that the usual oil-w
interfacial tension is dramatically lowered by the presence
amphiphile@2#, this being the origin of much of the comme
cial interest in such self-assembling structures. Making
of the dynamical nature of our recently introduced hydrod
namic lattice-gas model of microemulsions@3#, we demon-
strate that it is able to consistently simulate this import
experimentally observed phenomenon.

Growth kinetics in binary immiscible fluids have receive
much attention recently. Phase separation in these sys
has been simulated using a variety of techniques: these
clude cell dynamical systems without hydrodynamics@4# and
with Oseen tensor hydrodynamics@5#; time-dependent
Ginzburg-Landau models without hydrodynamics@6#, and
with hydrodynamics@7–9#; as well as lattice-gas automa
@10,11# and the related lattice-Boltzmann techniques@12#. A
central quantity in the study of growth kinetics is the tim
dependent average domain sizeR(t). For binary systems in
the regime of sharp domain walls, this follows algebra
growth laws of the formR(t);tn. In general, previous simu
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lations have confirmed experimental observations and th
retical predictions@13,14# for these systems. That is, fo
models without hydrodynamic interactions~binary alloys!

the growth exponent is found to ben5 1
3 , independent of the

spatial dimension. If flow effects are relevant~binary fluids!,
and the domain sizeR is greater than the hydrodynam
length Rh5(n2/rs) @13#, where n is the kinematic vis-
coscity,r is the density, ands is the surface tension coeffi
cient, then one obtainsn5 2

3 in two space dimensions. W
use our lattice-gas model to investigate this as well as
less commonly observedR,Rh regime in two-dimensions
~2D!, which has not been accessed before with lattice ga
this is described in Sec. IV. In three dimensions in the

gime R,Rh the growth exponent isn5 1
3 crossing over to

n51 at late times, withn5 2
3 if R.Rh .

The lowering of the oil-water interfacial tension by am
phiphile has important consequences for the nonequilibr
dynamical growth of domains within ternary systems. O
microscopic lattice-gas model of microemulsions, which c
rectly models the mesoscopic and macroscopic fluid beh
ior, enables us to investigate such dynamical domain grow
In ternary systems, growth kinetics has previously been s
ied by numerical integration of time-dependent Ginzbu
Landau models, for example, the hybrid models
Kawakatsuet al. @15# and the two local order paramete
model of Laradjiet al. @16,17#. These models do not includ
hydrodynamic effects and find that surfactants modify

dynamics from the binaryn5 1
3 algebraic exponent to a slow

growth that may be logarithmic in time. More recent
Laradjiet al. @18# have modeled phase separation in the pr
ence of surfactants using a very simple molecular dynam
708 © 1997 The American Physical Society
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55 709LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
model which implicitly includes hydrodynamic forces. The
authors found that such systems exhibit nonalgebraic, s
growth dynamics and that the average domain size satu
at a value inversely proportional to the surfactant concen
tion. They also found a crossover scaling form which d
scribes the change from the algebraic growth in pure bin
fluids to a slower domain growth when surfactants
present. This scaling Ansatz was observed to hold with
exponentn51/2, which corresponds to the binary grow
exponent seen at intermediate times in 2D in other rec
simulations, as discussed in Sec. IV. Contrasting with th
results, Pa¨tzold and Dawson@19# have recently suggeste
that with noise included in a time-dependent hydrodynam
Ginzburg-Landau model, binary-fluid-like power-law grow
behavior can be observed across the whole range of su
tant densities, with the exponent decreasing as the amou
surfactant is increased. However, this is clearly not how r
microemulsion systems behave: Even with noise presen
the system, one would expect domain growth to cease o
sufficient surfactant is present, and consequently one wo
also expect the growth to slow down significantly prior
this. We believe that the technique employed by Pa¨tzold and
Dawson has not allowed them to access the true late-
dynamics with noise present in the system; although this m
simply be due to them choosing to do fits using effect
exponents rather than probing other growth laws and du
the fact that the scaling region within which they calculat
the exponents is probably too short for intermediate to h
surfactant concentrations. Access to this asymptotic reg
is also difficult for molecular dynamics simulations. Lattic
gas automaton models, on the other hand, while including
construction the correct hydrodynamics, permit simulatio
over a wider range of relevant time scales than those te
niques described above. Fluctuations are an inherent and
portant physical component of such models, and con
quently our microemulsion model provides useful a
arguably unique insight into the dynamics of such comp
systems.

Characterization of the slow growth found in these a
phiphilic systems prior to saturation of the domain size
mains a challenge. Comparative slowing down in dom
growth has been observed in 2D simulations of systems w
quenched impurities@20#, where the growth is described by
logarithmically slow activated process withR(t);(lnt)u. For
these systems the surface tension diminishes over t
whereas for amphiphilic systems, which may not
quenched in the same sense as the impurities in these
els, the surface tension begins to be affected as soon a
molecules reach oil-water interfaces. Here we are intere
in the growth laws that are observed as we approach
‘‘saturation’’ point in our system. This is the point at whic
self-similarity and the usual scaling laws must break dow
In some sense there must be an exponential tailoff in
growth of domain size as the saturation point is reached.
results obtained using our microemulsion model for dom
growth in these ternary systems as the quantity of surfac
is varied are presented in Sec. V.

The purpose of this paper is to establish that our latti
gas automaton amphiphilic model exhibits the correct ph
cal and kinetic behavior in both the binary and terna
phases, as well as extending what is currently known ab
w
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these models and systems with reference to certain spe
areas. Section II contains a brief review of our lattice-g
model. In Sec. III we use the dynamical nature of our mo
in order to make a direct numerical evaluation of the o
water interfacial tension both with and without surfacta
present. The determined reduction of the interfacial tens
in the former case, which is our result for dynamical lattic
based models and can be more closely compared with
perimental results than other models, has a direct effec
the growth kinetics of domains which we subsequently
vestigate in Secs. IV and V. In the latter ternary microem
sion case, we detail the slow domain growth observed
find that a stretched-exponential functional form is the b
fit to the data when saturation of the system occurs.

II. THE LATTICE-GAS AUTOMATON MODEL

Our lattice-gas model is based on a microscopic parti
late format that allows us to include dipolar surfactant m
ecules alongside the basic oil and water particles@3#. In this
paper we are only concerned with a two-dimensional vers
of the model, though an extension to the three-dimensio
version~3D! is currently underway@21#. Working on a tri-
angular lattice with lattice vectorsci ( i51, . . . ,6), thestate
of the 2D model at sitex and timet is completely specified
by the occupation numbersni

a(x,t)P$0,1% for particles of
speciesa and velocity (ci /Dt).

The evolution of the lattice gas for one time step tak
place in two substeps. In thepropagationsubstep the par-
ticles simply move along their corresponding lattice vecto
In the collision substep the newly arrived particles chan
their state in a manner that conserves the mass of each
cies as well as the totalD-dimensional momentum.

We allow for two immiscible species which, following
convention, we often represent by colors:a5B ~blue! for
water, anda5R ~red! for oil, and we define thecolor charge
of a particle moving in directioni at positionx at time t as
qi(x,t)[ni

R(x,t)2ni
B(x,t). Interaction energies betwee

outgoing particles and the total color charge at neighbor
sites can then be calculated by assuming that a color ch
induces acolor potentialf(r )5q f(r ), at a distancer away
from it, where f (r ) is some function defining the type an
strength of the potential.

To extend this model to amphiphilic systems, we a
introduce a third~surfactant! speciesS, and the associated
occupation numberni

S(x,t), to represent the presence or a
sence of a surfactant particle. Pursuing the electrostatic a
ogy, the surfactant particles, which generally consist o
hydrophilic portion attached to a hydrophobic~hydrocarbon!
portion, are modeled ascolor dipole vectors, si(x,t). As a
result, the three-component model includes three additio
interaction terms, namely, the color-dipolar field, the dipo
color field, and the dipole-dipole interactions.

The total interaction energy that results can be written

DH int5DH cc1DH cd1DH dc1DH dd

5F S J1
s8

Dt D •~E1P!1J:~E1P!GDt, ~1!

where we have defined thecolor fluxof an outgoing state
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710 55EMERTON, COVENEY, AND BOGHOSIAN
J~x,t ![(
i

n ci
Dt

qi8~x,t ! ~2!

~the sum extending over all lattice vectors at a site, so tha
this casen56), and thecolor field

E~x,t ![ (
yPL

f 1~y!yq~x1y,t !, ~3!

where the sum is over sitesy which are elements of the
hexagonal latticeL. For short-range forces, the functionf 1
has compact support so that this sum includes only s
nearbyx. Thedipolar field vector is

P~x,t ![2 (
yPL

@ f 2~y!yy2 f 1~y!1#• s~x1y,t !, ~4!

where 1 denotes the rank-two unit tensor ands8[( i si
represents the total outgoing dipolar vector at a site. Si
larly we have defined thedipolar flux tensor

J~x,t ![(
i

n ci
Dt

si8~x,t !, ~5!

and thecolor-field gradient tensor

E~x,t ![ (
yPL

q~x1y,t !@ f 2~y!yy2 f 1~y!1#, ~6!

where again1 denotes the rank-two unit tensor. Finally w
have thedipolar field gradienttensor

P~x,t !52 (
yPL

s~x1y,t !•@ f 3~y!yyy2 f 2~y!y• V#, ~7!

wherein V is the completely symmetric and isotrop
fourth-rank tensor. In Eqs.~3!, ~4!, ~6!, and ~7! we have
defined certain derivatives of the functionf (r )

f l ~y![S 2
1

y

d

dyD
l

f ~y!, ~8!

wherel is a positive integer or zero@3#.
The collision process of the algorithm consists of enum

ating the outgoing states allowed by the conservation la
calculating the total interaction energy for each of these,
then, following the ideas of Chan and Liang@22# ~see also
Chenet al. @23#!, forming Boltzmann weights

e2bDH, ~9!

whereb is an inverse temperaturelike parameter. The po
collisional outgoing state and dipolar orientations can th
be obtained by sampling from the probability distributio
formed from these Boltzmann weights; consequently the
date is a stochastic process. The dipolar orientation stre
with surfactant particles in the usual way.

Our model’s parameter space has certain important p
wise limits. With no surfactant in the system, Eq.~1! reduces
to the color-color interaction term only,

DH cc[J•E,
in

s

i-

r-
s,
d

t-
n

-
ms

ir-

which we note to be exactly identical to the expression
the total color work used by Rothman and Keller@24# to
model immiscible fluids. Correspondingly, with no oil in th
system we are free to investigate the formation and dynam
of the structures that are known to form in binary wate
surfactant solutions. Indeed, in our original paper@3# we in-
vestigated both of these limits. In the limit of no surfacta
we obtained immiscible fluid behavior similar to that o
served by Rothman and Keller, and for the case of no oi
the system we found evidence for the existence of mice
and for a critical micelle concentration. Moreover, we de
onstrated that this model exhibits the correct 2D equilibriu
microemulsion phenomenology for both binary and tern
phase systems using a combination of visual and ana
techniques; various experimentally observed self-assemb
structures, such as the droplet and bicontinuous microem
sion phases, form in a consistent manner as a result of
justing the relative amounts of oil, water and amphiphile
the system. The presence of enough surfactant in the sy
is shown to halt the expected phase separation of oil
water, and this is achieved without altering the coupling co
stants from values that produce immiscible behavior in
case of no surfactant.

Note that in order to incorporate the most general form
interaction energy within our model system, we introduce
set of coupling constantsa,m,e,z, in terms of which the
total interaction energy can be written as

DH int5aDH cc1mDH cd1eDH dc1zDH dd. ~10!

These terms correspond, respectively, to the relative imm
cibility of oil and water, the tendency of surrounding dipol
to bend around oil or water particles and clusters, the p
pensity of surfactant molecules to align across oil-water
terfaces, and a contribution from pairwise~alignment! inter-
actions between surfactants. In the present paper we ana
domain growth of critical quenches within both binary a
ternary systems and consequently the two coefficients w
which we are most concerned area ande.

III. SURFACE TENSION ANALYSIS

The lowering of the interfacial tension between oil a
water by the action of surfactant molecules located at s
interfaces is an important property of microemulsions. E
perimental investigation of polymer–block-copolymer sy
tems, where the time scales are much slower than in
related microemulsions, has made studies of such chara
istics possible@25#. In the present section, we analyze t
surface tension within a system of oil, water, and surfact
as it varies with the surfactant density~concentration!. We
work with b51.0 and use, consistently throughout this p
per,a51.0, m50.001, e58.0, z50.005 as the values o
the coefficients in Eq.~10!, strongly encouraging surfactan
molecules to accumulate at oil-water interfaces while ma
taining the normal oil-water immiscible behavior.

We begin by showing that our model, in the limiting ca
of two immiscible fluids, produces physically realistic inte
facial tensions. In terms of the basic two-species Rothm
Keller immiscible lattice-gas, surface tension has been ex
sively investigated from both a theoretical and a numeri
viewpoint by Adler, d’Humie`res, and Rothman@26#. Using a
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55 711LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
bubble experiment as described in their paper, we can che
the validity of our basic model by evaluating the surfac
tension in the immiscible fluid case. We use Laplace’s law
which in two dimensions is

Pin2Pout5
s

R
, ~11!

wheres is the oil-water interfacial tension,R is the radius of
the bubble,Pin is the average pressure within the bubble, an
Pout the average pressure outside. Simulations are carried
using bubbles with a number of different radii. The pressu
in lattice gases is given in tensorial form by@27#

Pab5(
i50

6

ciacibNi , ~12!

wherea andb are tensor indices, and the expression can
evaluated by calculating the distribution of the population
Ni . The pressure arises as a result of the collision step of
lattice dynamics and so to a good approximation is depe
dent on local interactions only. The results from our simula
tions are shown in Fig. 1. They give good agreement wi
Laplace’s law, and a best-fitting line through the origin re
sults in an estimate ofs'0.378, close to the results reported
by Adler and co-workers@26#.

We now turn to the analysis of the interfacial tension fo
varying initial concentrations of surfactant in the system
where in each case the amphiphile is added at an initia
flat, bulk oil-water, interface. We make use of a direct dy
namical method of calculating the surface tension across t
flat interface, although, due to the complex dynamical natu
of the microemulsion behavior we are modeling, as mo
surfactant is added we have to allow for progressively mo
extensive relaxation of the system before collecting data
the equilibrated system. For the case of a flat interface p
pendicular to thez axis, the surface tensions is given by the
integral overz of the difference between the componen

FIG. 1. Verification of Laplace’s law and estimation of surfac
tension for two immiscible fluids~oil and water! only.
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PN of pressure normal to the interface and the compon
PT transverse to the interface@26,28#:

s5E
2`

`

@PN~z!2PT~z!#dz. ~13!

This quantity can be calculated by empirically computing t
given integral while remembering to take the underlying l
tice into account. It is worth noting that no equilibrium m
croemulsion model can measure the surface tension this
rectly since the method is inherently dynamical; equilibriu
models rely on calculatings as a function of variousinter-
action parameters. Indeed, the few other simulation mode
that do include dynamical effects for such complex fluid
often depend on the evolution of order parameters~for in-
stance, time-dependent Ginzburg-Landau models! and as
such have a coefficient that is simply tuned in order to a
the surface tension. There is an important caveat to be m
tioned here: as the initial concentration of surfactant in
system is increased one finds that the initially stable
water interface begins to show signs of distortion a
breakup. This effect arises as a result of the energetics o
system; preferentially surfactant particles reside in t
~mono!layers at oil-water surfaces and consequently the s
tem acts to create as much oil-water interfacial length
possible in order to accommodate the amphiphile. At so
critical density of surfactant it is clear that the initially fla
interface will break up completely; indeed, we then see
formation of a bicontinuous ‘‘middle’’ phase correspondin
to an effective oil-water surface tension of zero. At and b
yond this point the methods outlined above for measur
s are ineffective. However, below this critical density w
expect to be able to use Eq.~13! to evaluate the surface
tension, bearing in mind that, as we add more surfactan
the system, we have to wait correspondingly longer for
interface to relax before relevant measurements of,ni.
can be made; we expect sections of negative values fos
prior to equilibration and denote these as being part o
‘‘transient region.’’ In the asymptotic region the interfac
stabilizes and only positive average values for the surf
tension are found; this is denoted as the ‘‘smooth region

The results shown in Fig. 2 are the values of interfac
tension obtained,once the smooth region has been reach,
for varying initial concentrations of surfactant in the syste
the error bars from the subsequent time average are sm
than the size of the symbols and so are not included.
plotted values of surfactant density are given as a propor
of the total reduced density of oil, water, and surfactant
the system@3#. The figure clearly shows that our model
behaving as one would expect; the interfacial tension is
duced dramatically just by simply increasing the presence
amphiphile in the system, this being in exact accord w
experiment@25#. It is worth mentioning that our results als
closely mimic the interfacial behavior in a mixture of tw
immiscible polymers to which is added a linear diblock c
polymer comprised of units of both of the immiscible pol
mers: a sharp decrease in interfacial tension is observed
the addition of a small amount of copolymer, which com
pares well with the linear section of the graph, followed by
leveling off as the copolymer concentration is increased. T
leveling off at higher concentrations is indicative of interf
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712 55EMERTON, COVENEY, AND BOGHOSIAN
cial saturation by the copolymer and subsequent formation
copolymer micelles dispersed in the homopolymer phas
The relatively flat region of the curve at very low surfacta
densities is due to the tendency of a certain number of a
phiphiles to exist as highly dynamic monomers within t
bulk oil and water regions. As more surfactant is sub
quently added to the system, these molecules preferent
align at the energetically favorable oil-water interfaces a
so begin to strongly influence the interfacial tension. We fi
that, as the surfactant density is increased, the transien
gime persists for a longer time: 1000 time steps for a surf
tant density of 0.0156, 3000 time steps for 0.0469, a
13 000 time steps for 0.1172. This implies that we are m
ing towards acritical value of the surfactant density at whic
the flat interface will break up altogether and a smooth
gime will never arise. This is first seen in our simulatio
with a surfactant density of'0.195; beyond this value, the
computed average surface tension remains negative ove
entire simulation and permanent breakup of the initially fl
interface is observed. In Fig. 2 we have designated this p
as corresponding to an effective surface tension of zero.

IV. PHASE SEPARATION
IN BINARY IMMISCIBLE FLUIDS

In the 2D binary oil-water limit of our model we expec

the domain growth exponent to ben5 2
3 , in line with the

results of previous lattice-gas and related models. This
consistent with being in the inertial hydrodynamic regim
where the hydrodynamic lengthRh is less than the domain
sizeR, a condition forced on prior lattice-gas models@10# as
a result of their inability to vary viscosity or surface tensio
independently of density. A benefit of our model is that w
can access the other scaling regime, which has not pr
ously been accomplished with lattice gases, whereR,Rh , in
a consistent manner. This is possible because of the pres
of the inversetemperaturelikeparameterb that we have in-
troduced into our lattice-gas model@see Eq.~9!#. This gives
us exactly the desired form of control, since we are able

FIG. 2. Surface tension as calculated for varying amounts
amphiphile~reduced density! in the system.
of
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alter the surface tension~and related viscosity! without hav-
ing to change the density and consequently we can ea
access theR,Rh regime. In loweringb the collision step of
the time update results in a slower phase separation me
nism acting at the interface between the two binary flui
consequently the surface tension is reduced; however,
bulk viscosity is independent ofb @22# and so this mecha
nism raisesRh . In this case we expect to find a growt

exponent ofn5 1
2 since our model has full hydrodynamic

with inherent fluctuations, resulting from a drople
coalescence mechanism@29,10#, in accordance with the pre
dictions of Furakawa@30# and the molecular dynamics simu
lation results of Velasco and Toxvaerd@31#. We note that
this high Rh regime can also be accessed by lattic
Boltzmann models and that one such model was used
cently for an investigation into binary fluid spinoidal decom

position @32#. This group findn5 1
3 and currently there is

some controversy as to which is thecorrectexponent in this
regime. However, it should be noted that these latti
Boltzmann simulations do not include fluctuations and t
this appears to be the important difference between the m
els; if such features are regarded as desirable, the noise h
be inserted by hand.

To analyze the domain growth quantitatively we obta
the first zero crossing of the coordinate-space p
correlation function, which is equal to the characteristic d
main size,R(t). At time t following the quench, this corre
lation function is given by

C~r ,t !5
1

VK (x q~x,t !q~x1r ,t !L ~14!

whereq(x,t) is the two-fluid~oil and water! density differ-
ence~total color charge! at each site,V is the volume, and
the average is taken over an ensemble of initial conditio
Taking the angular average ofC(r ,t) givesC(r ,t), the first
zero crossing of which gives a measure of the character
domain size. Typically, at least five independent runs w
averaged to determine the growth law for each system s
ied.

Settinga51.0 in Eq.~10! and the inverse temperaturelik
parameterb50.5, we perform a critical quench~that is, with
equal amounts of oil and water in the system! on a simula-
tion cell of size 2563256. The initial condition is random
placement of the oil and water particles on the underly
lattice. The result is shown in Fig. 3, where we have us
logarithmic scales so as to be able to observe any expo
in the algebraic power-law growth for the system. The d

main growth exponent is clearlyn5 2
3 , consistent with pre-

vious results obtained for the Rothman-Keller model@10#
and characteristic of the regimeR.Rh . It is worth mention-
ing that, as expected, we obtain this behavior for a w
range of values ofb, from 0.3 upwards.

Further lowering ofb and hences, the interfacial ten-
sion, allows us to access theR,Rh regime, where typically
the domain size is expected to be less than the hydrodyna
length. We do indeed observe a different scaling expon
The result forb50.137 is contained in Fig. 4, where th

exponent is clearlyn5 1
2 . Although not included in this fig-

ure, at later times than those shown or, alternatively, w

f
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55 713LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
larger values ofb, we have observed the beginnings o
crossover tot2/3 behavior, consistent with expectations. Th
crossover fromt1/2 to t2/3 growth behavior occurs at a pro-
gressively earlier time asb is systematically increased from

0.137. Onceb gets close to 0.3 then then5 1
2 behavior is no

longer seen, the crossover effect disappears and we

n5 2
3 growth right from the start of the simulations.

In order to check that the presence of then5 1
2 exponent

in our results is not an artifact of incorrect dynamics in ou
model, we undertake two separate checks to confirm that
dynamics is indeed of typemodel Bas defined by Maet al.
@33#; that is, there is one conserved scalar~the density! and
one conserved vector~the momentum! order parameter. We

FIG. 3. Temporal~time steps! growth of domain size~lattice
units!, R(t), for binary fluid andb50.5, shown in a logarithmic-
scale plot. The straight line has gradient 2/3 and is included a
guide only.

FIG. 4. Temporal~time steps! growth of domain size~lattice
units!, R(t), for binary fluid andb50.137, shown in a logarithmic-
scale plot. The straight line has gradient 1/2 and is included a
guide only.
et

r
he

first look at results for interface dissolution@33#. It is known
that the time dependence of the decay of the interfacial t
sion at a binary equilibrium interface depends on whether
final ‘‘temperature’’ is above or equal to the critical temper
ture; we can use this knowledge to clarify the dynam
within our system. We find~see Fig. 5!

s;t2~1/4!, b5bc ; k;t21/2, b,bc ; ~15!

these results are in exact agreement with the prediction
Ma et al. @33# for amodel Bbinary fluid. The second check
we can make is to look for the well knownmodel B
Liftschitz-Slyozov t1/3 domain growth exponent in the ab
sence of hydrodynamics. This can be accomplished by r
ning binary fluid domain growth simulations with our mod
as above, but in this case we break momentum conserva

a

a

FIG. 5. Decay of surface tension with time for a binary flu
following an instantaneous change in the system to above~left-hand
curve! and equal to the critical ‘‘temperature.’’ The solid lines hav
gradients equal to21/2 ~left-hand curve! and 21/4 and are in-
cluded as a guide to the eye only.

FIG. 6. Temporal growth of domain size,R(t), for binary fluid
with broken momentum conversation, shown in a logarithmic-sc
plot. The straight line has gradient 1/3 and is included as a guid
the eye only.
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FIG. 7. Bicontinuous microemulsion structure shown at time step 200 of a simulation with equal amounts of oil and water in the
The arrows depict the direction of the amphiphile vectors: note that they always point from the oil to water domains, as we expe
r
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IV.
at a predetermined percentage of sites on the lattice by
versing all particle velocities immediately after the collisio
process has taken place. The result is the expectedt1/3 do-
main growth, see Fig. 6. These results provide confirma
that themodel B dynamics, which we are assuming to b
inherent to our model, are correct.

V. SELF-ASSEMBLY KINETICS IN MICROEMULSIONS

We now turn to the analysis of the ternary system. It
clear that the presence of surfactant in an oil-water mixt
dramatically alters the interfacial energetics~in particular, it
lowers the interfacial tension! and so it will affect the growth
of domains and consequently alter the usual binary-fl
scaling phenomena. When there is sufficient amphip
present we expect to see some final characteristic dom
sizeRc imposed on the system as it reaches an equilibr
state. The effect that the amphiphile molecules have on
usual oil-water immiscible behavior is clearly shown in F
7, which depicts time step 200 of a simulation of a bico
tinuous microemulsion phase; the arrows show the direc
and size of the color dipole vectors which represent the
factant particles. We note that as expected the surfactant
ticles migrate to the oil-water interfaces and always tend
point from one color to the other, sugesting that they
exhibiting a hydrophilic-hydrophobiclike nature. Due to th
immiscibility of the oil and water particles, all oil-water in
terfaces seek to contract in length as much as possible
very strong requirement that the surfactant particles si
e-

n
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e
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such interfaces, however, means that at some point
shrinking must cease so the system establishes its satu
domain size. The underlying lattice-gas dynamics will
course still be present in such a system, but, by averag
over an ensemble of simulations and over time we expec
be able to determineRc .

We begin with equal amounts of oil and water in o
system while the amount of surfactant is varied for ea
simulation. We note that this leads to the growth of bico
tinuous as opposed to droplet phases and that these ar
fectively equivalent to the critical quenches investigated
the binary-fluid case. Again we work withb51.0 and use
exactly the same values for the coupling coefficients in E
~10! as detailed earlier~in Sec. III!—consequently, all the
results which follow come solely from varying the amount
surfactant in the system. In essence this consistent choic
coefficients requires the surfactant particles to sit at the b
oil-water interfaces and discourages the formation of m
celles which would hamper the accurate measure of the c
acteristic length scale of the bicontinuous domain. The
sults that follow for the ternary system have been obtain
on a 1283128 lattice with periodic boundary conditions i
both (x and y) directions, and with the particles initially
placed on the lattice at random. The amount of surfact
used in each simulation is given in terms of its reduced d
sity; the amount of oil and water in the system is kept co
stant, being at a reduced density of 0.17 for each simulat
The measurement of the domain sizeR(t) is calculated from
the spatial pair-correlation function, as described in Sec.
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55 715LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
The results for systems with reduced surfactant dens
of 0.02 and 0.04 are shown in Fig. 8. For the former
average over five simulations is shown, while the latter c
sists of an average over ten. Over the late-time scaling
gime, domain growth in both of these systems clearly p

ceeds with an algebraic exponent ofn5 2
3 . There is

insufficient amphiphile in the system to affect the oil-wa
binary immiscible fluid behavior. As described in Sec. I
this is consistent with the expected presence of a cer
number of background amphiphilic monomers within t
bulk oil and water regions, an effect which for real system
dependent on the strength and type of amphiphile emplo
If there is any change in domain growth due to the ti
amount of surfactant present in these two simulations
would only be observed at very late times on significan
larger lattices than those we have used here. We can in
tigate such effects, however, by simply starting with mo
surfactant in the system. From our analysis in Sec. III,
expect a significant reduction in the surface tension to oc
at the equivalent of a reduced density of.0.05 surfactant
and beyond. At this point, large numbers of surfactant m
ecules have attached themselves to the oil-water interf
and so begin to affect the dynamical growth of domai
Although not shown here, with a reduced density of 0
surfactant in the system we obtain a crossover from an

ponentn5 2
3 to n5 1

2 at late times as surfactant molecul
adsorb at the interfaces and, as expected, begin to affec
domain growth.

With reduced surfactant densities of 0.06~and 0.07), we

observe a growth exponent ofn5 1
2 for a majority of the time

evolution, but in addition there is now a clear crossover
slower-than-algebraic growth at late times. This is depic
in Fig. 9, which contains the result for domain growth in
system with 0.06 surfactant and is obtained from an aver
over nine simulations, each having different initial rando
number seeds. The behavior described is not due to fin

FIG. 8. Temporal~time steps! growth of domain size~lattice
units!, shown in a logarithmic-scale plot. The straight line has g
dient 2/3 and is included as a guide to the eye. The upper sym
~crosses! are for 0.02 surfactant and the lower diamonds are
0.04 surfactant.
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size effects in the system, as we have stopped the simulat
well before this becomes a problem. The observed ‘‘jum

of the growth exponent fromn5 2
3 to n5 1

2 , and then to
slower behavior as the surfactant density is increased, is c
sistent with the binary-fluid behavior results that we outlin
in Sec. IV. The drop in surface tension takes us into a regi
that is equivalent to the slow binary one and beyond this
slower-than-algebraic growth. These results also show c
evidence of the crossover scaling transition, alluded to

Laradji et al. @18#, from algebraic binary growth (n5 1
2 ) to a

slower domain growth when surfactants are present. Our
of a lattice-gas model, in contrast to the molecular dynam
technique employed by these authors, has the advantag
easy access to a wide range of different time-scale regim
as the results we obtain here make evident.

Increasing the initial reduced density of amphiphile
0.08 we see a clear departure from algebraic behavior o
the time-scale of the simulations: After the first 400 tim
steps the slope of the curve is consistently below the l

n5 1
2 although the domains continue to grow over the tim

scale of the simulation, as shown in Fig. 10. Consequen
we look at a plot of lnt against domain size in order to in
vestigate whether we now have logarithmically slow, or ju
slow, growth in this region. As before, this is shown plotte
on logarithmic scales~see Fig. 11!, so that we are able to
observe any algebraic exponent for the lnt growth. If the
slow growth in these systems can indeed be related in so
way to that in systems with quenched impurities@20#, then
we would expect to find some poweru for the growth func-
tion (lnt)u, which decreases as the amount of surfactant in
system is further increased. In this initial case we find a va
u.3.0 for the time scale of the simulation beyond the ve
early-time transient behavior.

Moving to simulations with higher quantities of am
phiphile, it is clear that there is enough surfactant presen
the system for the domain growth to be significantly r
tarded. Figure 12 contains logarithmic-scale plots ofR(t)

-
ls
r

FIG. 9. Temporal~time steps! growth of domain size~lattice
units!, shown in a logarithmic-scale plot. The straight line has g
dient 1/2 and is included as a guide to the eye. Here we h
0.06 surfactant.
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716 55EMERTON, COVENEY, AND BOGHOSIAN
versust for 0.10 and 0.12 reduced density of surfactant, a
shows that we are now in a regime where we get comp
cessation of domain growth well within the finite-size limi
of the system. The former of these is the result of an aver
over 14 runs, and the latter an average over ten. In a sim
fashion to the above we reanalyze these two results, a
using the logarithmic-scale plots ofR(t) versus lnt in order
to establish whether a value for the exponentu can be ex-
tracted to help clarify the nature of the ‘‘slow’’ growth ob
served prior to saturation. Figure 13 contains a logarithm
scale plot ofR(t) versus lnt for the first of these (0.10
surfactant! and shows slow logarithmic growth with expo
nentu.2.2 prior to saturation. With surfactant densities
0.12 and higher it is clear from the logarithmic-scale plots

FIG. 10. Temporal~time steps! growth of domain size~lattice
units!, shown in a logarithmic-scale plot. The straight line has g
dient 1/2 and is included as a guide to the eye. Here we h
0.08 surfactant.

FIG. 11. Plot of lnt ~time steps! against growth of domain size
~lattice units!, shown with logarithmic scales and surfactant dens
of 0.08. The straight line has gradient 3.0 and is included as a g
only.
d
te

ge
ar
in
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f
f

R(t) versust that a significant slowing down occurs afte
approximately the first 400 time steps of the simulatio
~designated as the transient region!. This is obviously related
to the time required for a significant proportion of the su
factant molecules present to migrate to the oil-water int
faces that form rapidly at very early times. Consequently
look at later times, although again presaturation, to estab
a value for the exponentu. Figure 14, again a logarithmic
scale plot ofR(t) versus lnt, but in this case for a surfactan
density of 0.12, gives an approximate exponent ofu.1.1
over the majority of the simulation running time, followe
by saturation of the domain size at late times. With the
intermediate surfactant densities, as clearly shown in Fig.
we observe large fluctuations in the measured domain siz
late times in the simulations which cannot be eliminated

-
e

de

FIG. 12. Temporal~time steps! growth of domain size~lattice
units!, shown in a logarithmic-scale plot. The upper points cor
spond to 0.10 surfactant and the lower ones to 0.12 surfactant

FIG. 13. Plot of domain size~lattice units! against lnt ~time
steps!, shown with logarithmic scales and surfactant density
0.10. The straight line has gradient 2.2 and is included as a g
only.
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55 717LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
ensemble averaging. Indeed, these fluctuations have an
portant physical basis in that they correspond to the contin
break up and reformation of the bicontinuouslike structu
under investigation, resulting from the finely balanced co
petition between the immiscible binary-fluid behavior of o
and water and the action of surfactant molecules at oil-w
interfaces. As we increase the density of surfactant bey
this level, we find that the fluctuations become less sev
and actually die out because sufficient surfactant molec
reside at the interfaces to effectively outweigh the oil-wa
interfacial tension completely. The domain structures th
become strongly pinned and consequently less fluctuatio
allowed by the system.

With sufficient surfactant present in the system for t
domain size to reach saturation, it is clear that the logar
mic scaling is incapable of completely describing the dyna
ics. Consequently, following a suggestion by Douglas@34#,
we attempt to analyze the data in these cases in terms
stretched-exponentialfunctional form,

R~ t !5A2B exp~2CtD!. ~16!

This fit has previously been successfully applied to both
experimental micellar system@35# and a simulated supermo
lecular spinoidal system@36# but never before has it bee
linked with microemulsions. Figure 15 contains the dom
size against time data points and the results of the nonlin
fit to those points using the above functional form, for t
case of 0.12 reduced surfactant density. The fit remains g
across the full time scale of the simulation and seems
correctly describe the saturation of the system; conseque
we apply this functional form as the surfactant density
further increased.

Figure 16, which contains logarithmic-scale plots
R(t) versust for simulations with relatively high amounts o
amphiphile, shows that the domain growth is finally halt
by the presence of sufficient surfactant: In essence we ob

FIG. 14. Plot of domain size~lattice units! against lnt ~time
steps!, shown with logarithmic scales and surfactant density
0.12. The straight line has gradient 1.1, and is included as a g
only.
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a final characteristic saturated domain size for the equi
rium structures formed by the system. We expect that
average domain size will stop growing when all of the o
water interface is covered by a surfactant ‘‘monolayer’’@18#.
Noting that the average domain size,R(t), is inversely pro-
portional to the total length of such oil-water interfaces, w
then expect the final domain size to be inversely proportio
to the average density of surfactants at these interfaces. H
ever, in contrast to the deep quenches with no system fl
tuations performed by Laradjiet al. @18#, where all the sur-
factant molecules are found at oil-water interfaces, we hav
situation wherein a certain amount of the surfactant is lik
to exist as monomer in bulk oil and water regions, this be
confirmed by our surface tension analysis~see Sec. III!. Con-
sequently, in plotting the final domain sizeRc as a function
of 1/rs , wherers is the average density of surfactant at t
oil-water interfaces, we need to evaluaters from the total
amount of surfactant in a particular system by subtract
away the ‘‘background monomer density.’’ The result
plotted in Fig. 17: We find the expected linear relationsh
between the final saturated domain size and the amoun
interfacial surfactant in the system; that is, the final char
teristic domain size is inversely proportional to theinterfa-
cial surfactant density in the system. The straight line on
plot is a linear fit to the first four points.~The final point,
corresponding to a total reduced surfactant density of 0
lies below this line probably because the simulation had
fully equilibrated.! It is worth noting that the result shown i
Fig. 17 is also consistent with the relationship found betwe
the final domain size and the amplitude of disorder in s
tems with quenched impurities, as determined by Gyureet
al. @20#.

Although not shown here, plotting domain size vers
lnt for the case of surfactant density 0.14 indicates tha
this case the slow domain growth may go as (lnt)u with
u.0.5 over the dominant time scale of the simulations~be-
yond the initial transient region! and before the domain siz
saturates completely. The same is true for a reduced su
tant density of 0.15, but in this caseu.0.3 before saturation
occurs. Table I contains a summary of how the exponenu
changes with surfactant concentration in the region of lo

f
de

FIG. 15. Plot of domain size~lattice units! against time~time
steps! for surfactant density of 0.12. The full line superimposed
the figure is the stretched-exponential fit to the data points.
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718 55EMERTON, COVENEY, AND BOGHOSIAN
rithmically slow growth studied in these and the previo
simulations. These results, where the domain growth isslow,
appear to be consistent with a picture obtained from
analysis of domain growth with quenched impurities, whe
the slow growth goes as (lnt)u, and whereu changes as the
number of impurities is increased@20#.

In addition to the logarithmic form, we have tried to fi
our data sets to the stretched exponential functional fo
described above. The results are contained in Figs. 18
19. We find that the stretched-exponential form, Eq.~16!, is
a more accurate fit to our data than the logarithmic for
since it correctly describes the full arrest of domain grow
Of the four coefficients in this function,A is a measure of the
arrested domain size, andB is uninteresting as it depends o

FIG. 16. Temporal~time steps! growth of domain size~lattice
units!, shown in a logarithmic-scale plot. Moving from top to bo
tom the points correspond to 0.14 and 0.15 surfactant, respecti
The upper curve is an average over ten simulations, the lower

FIG. 17. Plot of the average final characteristic domain s
Rc ~lattice units! against the inverse of the~reduced! density of
surfactant 1/rs at the interfaces in the system.
n
e

m
nd

,
.

the minimum resolvable domain size; thedecay rate C, on
the other hand, and thestretching exponent Dare very inter-
esting and well-behaved functions of the surfactant dens
In particular,C appears to diverge as the spontaneous em
sification point is approached.

VI. DISCUSSION AND CONCLUSIONS

We have studied both binary immiscible and ternary m
croemulsion dynamical behavior using our hydrodynam
lattice-gas model of self-assembling amphiphilic systems.
the binary case we have found algebraic scaling laws
agreement with expectations@13#, the 2D growth exponents
being 1

2 and 2
3 at early and late times, respectively. Th

former is new to lattice-gas models, although it has also be
observed in molecular@31#, Langevin @37# and dissipative
particle dynamics@38# simulations, and is also in accord with
the results of a renormalization-group approach@13#. The
presence of the12 in the former regime, as opposed to the1

3

found by lattice-Boltzmann and some other simulation tec
niques, appears to be as a direct result of the inclusion
natural fluctuations within the lattice-gas framework. In th
ternary system we have confirmed, in accord with expe
ment and in a consistent manner, that the presence of sur
tant results in a reduction of the oil-water interfacial tensio
and consequently that the growth of domains in such syste
is radically different from growth in the binary case. We fin

a crossover from the fastn5 2
3 binary regime in which we

ly.
e.

e FIG. 18. Plot of domain size~lattice units! against time~time
steps! for surfactant density of 0.14. The full line superimposed o
the figure is the stretched-exponential fit to the data points.

TABLE I. Logarithmic exponentu as it changes with surfactant
concentration.

Surfactant Concentration u

0.08 3.0
0.10 2.2
0.12 1.1
0.14 0.5
0.15 0.3
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55 719LATTICE-GAS SIMULATIONS OF DOMAIN GROWTH . . .
begin, first ton5 1
2 algebraic growth and then to ‘‘slow’’

behavior as surfactant is added to the system. This beha
mimics exactly the crossover scaling function predicted
Laradji et al. @18# from molecular dynamic simulations o
similar systems. The greater the concentration of surfac
the slower the growth becomes; in fact, prior to saturation
appears to be logarithmically slow, the domain size going
(lnt)u with u changing from 3.0 through to 0.3 as the am
phiphile concentration increases through the range con
ered in this study. This behavior can be related to that
systems with quenched impurities in which the domains
pinned at late times, although it is not presently cle
whether the apparent slow logarithmic growth behavior o
served is understandable on this basis alone. In addition,
find that when the surfactant concentration is supercriti
and the domain growth is arrested within the time scale
the simulation, the bestempirical description of our system
appears to be a stretched-exponential form, a result tha
different for microemulsion systems of the type we are mo
eling here. Further work is required to establish the sign

FIG. 19. Plot of domain size~lattice units! against time~time
steps! for surfactant density of 0.15. The full line superimposed
the figure is the stretched-exponential fit to the data points.
om
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cance of the divergence of the coefficients of the stretch
exponential function, and, in particular, whether this has a
relevance for the use of the two functional forms. In ad
tion, detailed experimental studies of micromeulsionlike s
tem kinetics would be useful for comparisoninter alia with
the stretched-exponential results we have obtained here

In conclusion, we have completed an investigation in
the complex dynamical behavior of the two-dimensional
continuous microemulsion phase, which corresponds t
critical quench in a binary oil and water system. This wo
represents an important extension to the validation of
recently introduced lattice-gas model for amphiphilic sy
tems@3# as well as offering insight into the kinetics of suc
systems. However, our model is also able to accurately si
late off-critical droplet and micellar phases@3# and further
work is required to unravel the domain growth dynamics
such situations; we expect the dynamical growth laws to
modified in some way since this is also the case for
related binary-fluid off-critical quench. Although all th
simulations reported in this paper have been done in
spatial dimensions, we are currently implementing a thr
dimensional version of our model@21# where again, since
binary growth laws are different in three dimensions, w
expect our present results to be modified.
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